Learning and Exploiting Partial Knowledge in Distributed Estimation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43962472" target="_blank" >RIV/49777513:23520/21:43962472 - isvavai.cz</a>
Result on the web
<a href="https://dx.doi.org/10.1109/MFI52462.2021.9591197" target="_blank" >https://dx.doi.org/10.1109/MFI52462.2021.9591197</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/MFI52462.2021.9591197" target="_blank" >10.1109/MFI52462.2021.9591197</a>
Alternative languages
Result language
angličtina
Original language name
Learning and Exploiting Partial Knowledge in Distributed Estimation
Original language description
In distributed estimation, several sensor nodes provide estimates of the same underlying dynamic process. These estimates are correlated but due to local processing, the correlations are only partially known or even unknown. For a consistent fusion of the local estimates, the correlation needs to be properly treated. Many methods provide consistent but overly conservative fusion results. In this paper, we propose to learn partial knowledge about the correlation in the form of correlation sets and exploit this knowledge to provide less conservative estimates. We use a simple numerical example to demonstrate the advantages of the proposed approach in terms of quality and consistency and how the quality of the fused estimate increases with time.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/GC20-06054J" target="_blank" >GC20-06054J: Intelligent Distributed Estimation Architectures</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedins of the 2021 IEEE International Conference on Multisensor Fusion and Integration (MFI 2021)
ISBN
978-1-66544-521-4
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
1-7
Publisher name
IEEE
Place of publication
Karlsruhe
Event location
Karlsruhe, Německo
Event date
Sep 23, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—