All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Importance Gauss-Hermite Gaussian Filter for Models with Non-Additive Non-Gaussian Noises

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43962474" target="_blank" >RIV/49777513:23520/21:43962474 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/9626832" target="_blank" >https://ieeexplore.ieee.org/document/9626832</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Importance Gauss-Hermite Gaussian Filter for Models with Non-Additive Non-Gaussian Noises

  • Original language description

    The paper deals with the state estimation of nonlinear stochastic systems with non-additive non-Gaussian noises. A new algorithm is proposed based on the computationally efficient Gaussian filter. The non-additivity and non-Gaussianity of the noises prevents the usage of standard quadratures to evaluate the moment integrals present in the Gaussian filter as these are not Gauss-weighted. The proposed algorithm leverages the importance Gauss-Hermite method to evaluate the integrals by means of the Gaussian proposal PDF. In order to improve the evaluation quality, an iterative improvement of the proposal PDF is employed. The paper also discusses the algorithm for special cases of the model with either process or measurement noise being additive yet non-Gaussian. The performance of the proposed algorithm is illustrated using a numerical example.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GC20-06054J" target="_blank" >GC20-06054J: Intelligent Distributed Estimation Architectures</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 2021 IEEE 24th International Conference on Information Fusion (FUSION)

  • ISBN

    978-1-73774-971-4

  • ISSN

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    1-7

  • Publisher name

    IEEE

  • Place of publication

    Sun City

  • Event location

    Sun City, Jihoafrická republika

  • Event date

    Nov 1, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article