On the parameter in augmented Lagrangian preconditioning for isogeometric discretizations of the NSE
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43962479" target="_blank" >RIV/49777513:23520/21:43962479 - isvavai.cz</a>
Result on the web
<a href="http://ugn.cas.cz/event/2021/sna/files/sna21-sbornik.pdf" target="_blank" >http://ugn.cas.cz/event/2021/sna/files/sna21-sbornik.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the parameter in augmented Lagrangian preconditioning for isogeometric discretizations of the NSE
Original language description
We deal with efficient numerical solution of the incompressible Navier-Stokes equations (NSE) discretized using isogeometric analysis (IgA) approach. IgA exploits the isoparametric approach, i.e., the same basis functions are used for description of the computational domain geometry and also for representation of the solution. The IgA discretization basis has several speciffic properties different from standard finite element basis, most importantly a higher interelement continuity leading to denser matrices of the resulting linear systems. Our aim is to develop efficient solvers for these systems based on preconditioned Krylov subspace methods. Based on our comparison of several state-of-the-art block preconditioners for linear systems arising from the IgA discretization of the incompressible NSE, the augmented Lagrangian (AL) preconditioner and its modiffed version (MAL) seems to be very promising. However, their effectiveness is strongly parameter dependent. In this contribution, we focus on the optimal setting of these preconditioners for different IgA discretizations.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA19-04006S" target="_blank" >GA19-04006S: Modern geometric-numerical methods in simulation of incompressible turbulent flow for large-scale real-world problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Seminar on Numerical Analysis
ISBN
978-80-86407-82-1
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
17-20
Publisher name
Institute of Geonics of the Czech Academy of Sciences
Place of publication
Ostrava
Event location
Ostrava
Event date
Jan 25, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—