On a representation of the automorphism group of a graph in a unimodular group
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43962836" target="_blank" >RIV/49777513:23520/21:43962836 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0012365X21003198" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0012365X21003198</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2021.112606" target="_blank" >10.1016/j.disc.2021.112606</a>
Alternative languages
Result language
angličtina
Original language name
On a representation of the automorphism group of a graph in a unimodular group
Original language description
We investigate a representation of the automorphism group of a connected graph X in the group of unimodular matrices U(b) of dimension b, where b is the Betti number of graph X. We classify the graphs for which the automorphism group does not embed into U(b) . It follows that if X has no pendant vertices and X is not a simple cycle, then the representation is faithful and Aut(X) acts faithfully on homology group H(X, Z). The latter statement can be viewed as a discrete analogue of a classical Hurwitz’s theorem on Riemann surfaces of genera greater than one.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-15576S" target="_blank" >GA20-15576S: Graph Covers: Symmetries and Complexity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
344
Issue of the periodical within the volume
12
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
4
Pages from-to
—
UT code for WoS article
000712876500025
EID of the result in the Scopus database
2-s2.0-85114015564