All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Transfer Learning for Czech Historical Named Entity Recognition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43963747" target="_blank" >RIV/49777513:23520/21:43963747 - isvavai.cz</a>

  • Result on the web

    <a href="https://aclanthology.org/2021.ranlp-main.65.pdf" target="_blank" >https://aclanthology.org/2021.ranlp-main.65.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.26615/978-954-452-072-4_065" target="_blank" >10.26615/978-954-452-072-4_065</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Transfer Learning for Czech Historical Named Entity Recognition

  • Original language description

    Nowadays, named entity recognition (NER) achieved excellent results on the standard corpora. However, big issues are emerging with a need for an application in a specific domain, because it requires a suitable annotated corpus with adapted NE tag-set. This is particularly evident in the historical document processing field. The main goal of this paper consists of proposing and evaluation of several transfer learning methods to increase the score of the Czech historical NER. We study several information sources, and we use two neural nets for NE modeling and recognition. We employ two corpora for evaluation of our transfer learning methods, namely Czech named entity corpus and Czech historical named entity corpus. We show that BERT representation with fine-tuning and only the simple classifier trained on the union of corpora achieves excellent results.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF17_048%2F0007267" target="_blank" >EF17_048/0007267: Research and Development of Intelligent Components of Advanced Technologies for the Pilsen Metropolitan Area (InteCom)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Deep Learning for Natural Language Processing Methods and Applications

  • ISBN

    978-954-452-072-4

  • ISSN

    1313-8502

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    576-582

  • Publisher name

    INCOMA, Ltd.

  • Place of publication

    Shoumen

  • Event location

    Shoumen, Bulgaria

  • Event date

    Sep 1, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article