Transfer Learning for Czech Historical Named Entity Recognition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43963747" target="_blank" >RIV/49777513:23520/21:43963747 - isvavai.cz</a>
Result on the web
<a href="https://aclanthology.org/2021.ranlp-main.65.pdf" target="_blank" >https://aclanthology.org/2021.ranlp-main.65.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.26615/978-954-452-072-4_065" target="_blank" >10.26615/978-954-452-072-4_065</a>
Alternative languages
Result language
angličtina
Original language name
Transfer Learning for Czech Historical Named Entity Recognition
Original language description
Nowadays, named entity recognition (NER) achieved excellent results on the standard corpora. However, big issues are emerging with a need for an application in a specific domain, because it requires a suitable annotated corpus with adapted NE tag-set. This is particularly evident in the historical document processing field. The main goal of this paper consists of proposing and evaluation of several transfer learning methods to increase the score of the Czech historical NER. We study several information sources, and we use two neural nets for NE modeling and recognition. We employ two corpora for evaluation of our transfer learning methods, namely Czech named entity corpus and Czech historical named entity corpus. We show that BERT representation with fine-tuning and only the simple classifier trained on the union of corpora achieves excellent results.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF17_048%2F0007267" target="_blank" >EF17_048/0007267: Research and Development of Intelligent Components of Advanced Technologies for the Pilsen Metropolitan Area (InteCom)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Deep Learning for Natural Language Processing Methods and Applications
ISBN
978-954-452-072-4
ISSN
1313-8502
e-ISSN
—
Number of pages
7
Pages from-to
576-582
Publisher name
INCOMA, Ltd.
Place of publication
Shoumen
Event location
Shoumen, Bulgaria
Event date
Sep 1, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—