All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Dialogue Act Recognition Using Visual Information

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43963769" target="_blank" >RIV/49777513:23520/21:43963769 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.scopus.com/record/display.uri?origin=resultslist&eid=2-s2.0-85115300974" target="_blank" >https://www.scopus.com/record/display.uri?origin=resultslist&eid=2-s2.0-85115300974</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-86331-9_51" target="_blank" >10.1007/978-3-030-86331-9_51</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Dialogue Act Recognition Using Visual Information

  • Original language description

    Automatic dialogue management including dialogue act (DA) recognition is usually focused on dialogues in the audio signal. However, some dialogues are also available in a written form and their automatic analysis is also very important. The main goal of this paper thus consists in the dialogue act recognition from printed documents. For visual DA recognition, we propose a novel deep model that combines two recurrent neural networks. The approach is evaluated on a newly created dataset containing printed dialogues from the English VERBMOBIL corpus. We have shown that visual information does not have any positive impact on DA recognition using good quality images where the OCR result is excellent. We have also demonstrated that visual information can significantly improve the DA recognition score on low-quality images with erroneous OCR. To the best of our knowledge, this is the first attempt focused on DA recognition from visual data.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF17_048%2F0007267" target="_blank" >EF17_048/0007267: Research and Development of Intelligent Components of Advanced Technologies for the Pilsen Metropolitan Area (InteCom)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Document Analysis and Recognition - ICDAR 2021

  • ISBN

    978-3-030-86330-2

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    15

  • Pages from-to

    793-807

  • Publisher name

    Springer

  • Place of publication

    Heidelberg

  • Event location

    Lausanne, Švýcarsko

  • Event date

    Sep 5, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article