Approximate symmetries of perturbed planar discrete curves
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43965145" target="_blank" >RIV/49777513:23520/22:43965145 - isvavai.cz</a>
Result on the web
<a href="https://reader.elsevier.com/reader/sd/pii/S0167839622000516?token=4C5A7E8E4BBBACAB421CD095E3F575FE7B9706F65E18B4E18DBA835DB2E786F2D7DB2A81FB0A969957A5A96E4C9C3F20&originRegion=eu-west-1&originCreation=20220602112634" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S0167839622000516?token=4C5A7E8E4BBBACAB421CD095E3F575FE7B9706F65E18B4E18DBA835DB2E786F2D7DB2A81FB0A969957A5A96E4C9C3F20&originRegion=eu-west-1&originCreation=20220602112634</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cagd.2022.102115" target="_blank" >10.1016/j.cagd.2022.102115</a>
Alternative languages
Result language
angličtina
Original language name
Approximate symmetries of perturbed planar discrete curves
Original language description
We present a new algorithm to decide whether a discrete curve is symmetric or not. In the affirmative case we assign to each curve a particular symmetry group, and describe all rotational and reflectional symmetries (if they exist). The fundamental strategy of our approach is to decompose the given curve into a collection of appropriate components (simpler discrete curves) whose symmetries can be found more easily. The symmetries of the original curve are then derived from the symmetries of these individual components. Subsequently, we show that the formulated approach can be suitably modified to the situation when the input discrete curve is perturbed. Then we determine the approximate symmetries. The functionality of the proposed method is illustrated by several examples.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GF21-08009K" target="_blank" >GF21-08009K: Generalized Symmetries and Equivalences of Geometric Data</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
COMPUTER AIDED GEOMETRIC DESIGN
ISSN
0167-8396
e-ISSN
1879-2332
Volume of the periodical
96
Issue of the periodical within the volume
June
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
20
Pages from-to
nestrankovano
UT code for WoS article
000809910900001
EID of the result in the Scopus database
2-s2.0-85131400416