All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximate symmetries of perturbed planar discrete curves

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43965145" target="_blank" >RIV/49777513:23520/22:43965145 - isvavai.cz</a>

  • Result on the web

    <a href="https://reader.elsevier.com/reader/sd/pii/S0167839622000516?token=4C5A7E8E4BBBACAB421CD095E3F575FE7B9706F65E18B4E18DBA835DB2E786F2D7DB2A81FB0A969957A5A96E4C9C3F20&originRegion=eu-west-1&originCreation=20220602112634" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S0167839622000516?token=4C5A7E8E4BBBACAB421CD095E3F575FE7B9706F65E18B4E18DBA835DB2E786F2D7DB2A81FB0A969957A5A96E4C9C3F20&originRegion=eu-west-1&originCreation=20220602112634</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cagd.2022.102115" target="_blank" >10.1016/j.cagd.2022.102115</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximate symmetries of perturbed planar discrete curves

  • Original language description

    We present a new algorithm to decide whether a discrete curve is symmetric or not. In the affirmative case we assign to each curve a particular symmetry group, and describe all rotational and reflectional symmetries (if they exist). The fundamental strategy of our approach is to decompose the given curve into a collection of appropriate components (simpler discrete curves) whose symmetries can be found more easily. The symmetries of the original curve are then derived from the symmetries of these individual components. Subsequently, we show that the formulated approach can be suitably modified to the situation when the input discrete curve is perturbed. Then we determine the approximate symmetries. The functionality of the proposed method is illustrated by several examples.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GF21-08009K" target="_blank" >GF21-08009K: Generalized Symmetries and Equivalences of Geometric Data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    COMPUTER AIDED GEOMETRIC DESIGN

  • ISSN

    0167-8396

  • e-ISSN

    1879-2332

  • Volume of the periodical

    96

  • Issue of the periodical within the volume

    June

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    20

  • Pages from-to

    nestrankovano

  • UT code for WoS article

    000809910900001

  • EID of the result in the Scopus database

    2-s2.0-85131400416