All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hybrid Neural Network Augmented Physics-based Models for Nonlinear Filtering

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43966078" target="_blank" >RIV/49777513:23520/22:43966078 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.23919/FUSION49751.2022.9841291" target="_blank" >https://doi.org/10.23919/FUSION49751.2022.9841291</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23919/FUSION49751.2022.9841291" target="_blank" >10.23919/FUSION49751.2022.9841291</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hybrid Neural Network Augmented Physics-based Models for Nonlinear Filtering

  • Original language description

    In this paper we present a hybrid neural network augmented physics-based modeling (APBM) framework for Bayesian nonlinear latent space estimation. The proposed APBM strategy allows for model adaptation when new operation conditions come into play or the physics-based model is insufficient (or incomplete) to properly describe the latent phenomenon. One advantage of the APBMs and our estimation procedure is the capability of maintaining the physical interpretability of estimated states. Furthermore, we propose a constraint filtering approach to control the neural network contributions to the overall model. We also exploit assumed density filtering techniques and cubature integration rules to present a flexible estimation strategy that can easily deal with nonlinear models and high-dimensional latent spaces. Finally, we demonstrate the efficacy of our methodology by leveraging a target tracking scenario with nonlinear and incomplete measurement and acceleration models, respectively.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 25th International Conference on Information Fusion, FUSION 2022

  • ISBN

    978-1-73774-972-1

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    1-6

  • Publisher name

    IEEE

  • Place of publication

    Linköping, Sweden

  • Event location

    Linköping, Sweden

  • Event date

    Jul 4, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000855689000065