k-ended O(m) x O(n) invariant solutions to the Allen-Cahn equation with infinite Morse index
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43966212" target="_blank" >RIV/49777513:23520/22:43966212 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0022123622001811?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022123622001811?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfa.2022.109561" target="_blank" >10.1016/j.jfa.2022.109561</a>
Alternative languages
Result language
angličtina
Original language name
k-ended O(m) x O(n) invariant solutions to the Allen-Cahn equation with infinite Morse index
Original language description
In this work we study existence, asymptotic behaviour and stability properties of O(m) ×O(n)-invariant solutions of the Allen-Cahn equation Δu +u(1 −u2) =0 in Rm×Rn with m, n ≥2 and m +n ≥8. We exhibit four families of solutions whose nodal sets are smooth logarithmic corrections of the Lawson cone and with infinite Morse index. This work complements earlier studies started by Pacard and Wei and by Agudelo, Kowalczykand Rizzi.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Functional Analysis
ISSN
0022-1236
e-ISSN
1096-0783
Volume of the periodical
283
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
43
Pages from-to
1-43
UT code for WoS article
000810166500003
EID of the result in the Scopus database
2-s2.0-85130569288