Critical Points Properties of Ordinary Differential Equations as a Projection of Implicit Functions Using Spatio-Temporal Taylor Expansion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43968467" target="_blank" >RIV/49777513:23520/22:43968467 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-10450-3_15" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-10450-3_15</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-10450-3_15" target="_blank" >10.1007/978-3-031-10450-3_15</a>
Alternative languages
Result language
angličtina
Original language name
Critical Points Properties of Ordinary Differential Equations as a Projection of Implicit Functions Using Spatio-Temporal Taylor Expansion
Original language description
This contribution describes a new approach to formulation of ODE and PDE critical points using implicit formulation as t-variant scalar function using the Taylor expansion. A general condition for the critical points is derived and specified for t invariant case. It is expected, that the given new formulae lead to more reliable detection of critical points especially for large 3D fluid flow data acquisition, which enable high 3D vector compression and their representation using radial basis functions (RBF).
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Computational Science and Its Applications – ICCSA 2022
ISBN
978-3-031-10449-7
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
8
Pages from-to
197-204
Publisher name
Springer
Place of publication
Cham
Event location
Malaga, Spain
Event date
Jul 4, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000916455600015