Traveling waves for generalized Fisher-Kolmogorov equation with discontinuous density dependent diffusion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43965755" target="_blank" >RIV/49777513:23520/23:43965755 - isvavai.cz</a>
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.8683" target="_blank" >https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.8683</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mma.8683" target="_blank" >10.1002/mma.8683</a>
Alternative languages
Result language
angličtina
Original language name
Traveling waves for generalized Fisher-Kolmogorov equation with discontinuous density dependent diffusion
Original language description
We are concerned with the existence and qualitative properties of traveling wave solutions for a quasilinear reaction-diffusion equation on the real line. We consider a non-Lipschitz reaction term of Fisher-KPP type and a discontinuous diffusion coefficient that allows for degenerations and singularities at equilibrium points. We investigate the joint influence of the reaction and diffusion terms on the existence and nonexistence of traveling waves, and assuming these terms are of power-type near equilibria, we provide classification of solutions based on their asymptotic properties. Our approach provides a broad theoretical background for the mathematical treatment of rather general models not only in population dynamics but also in other applied sciences and engineering.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA22-18261S" target="_blank" >GA22-18261S: Nonlinear problems with non-standard diffusion</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
ISSN
0170-4214
e-ISSN
1099-1476
Volume of the periodical
46
Issue of the periodical within the volume
11
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
12064-12086
UT code for WoS article
000852823600001
EID of the result in the Scopus database
2-s2.0-85137498121