All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Towards Historical Map Analysis using Deep Learning Techniques

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43969452" target="_blank" >RIV/49777513:23520/23:43969452 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-34111-3_16" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-34111-3_16</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-34111-3_16" target="_blank" >10.1007/978-3-031-34111-3_16</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Towards Historical Map Analysis using Deep Learning Techniques

  • Original language description

    This paper presents methods for automatic analysis of historical cadastral maps. Our goal is to detect important features in individual map sheets to allow their further processing and connecting the sheets into one seamless map that can bebetter presented online. We concentrate on detection of the map frame,which defines the important segment of the map sheet. Other crucial features are so-called inches that define the measuring scale of the map. We also detect the actual map area. We propose novel segmentation approaches that combine standard computer vision techniques with neural nets (NNs). We have shown that combining the standard computer vision techniques with NNs can outperform the state-of-the-art approaches in the scenario when only little training data is available. We have also created a novel annotated dataset that is used for network training and evaluation.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    AIAI 2023: Artificial Intelligence Applications and Innovations

  • ISBN

    978-3-031-34110-6

  • ISSN

    1868-4238

  • e-ISSN

    1868-422X

  • Number of pages

    13

  • Pages from-to

    173-185

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Cham

  • Event location

    León, Španělsko

  • Event date

    Jun 14, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article