Propagation Reversal for Bistable Differential Equations on Trees
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43969593" target="_blank" >RIV/49777513:23520/23:43969593 - isvavai.cz</a>
Result on the web
<a href="https://epubs.siam.org/doi/10.1137/22M1502203" target="_blank" >https://epubs.siam.org/doi/10.1137/22M1502203</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/22M1502203" target="_blank" >10.1137/22M1502203</a>
Alternative languages
Result language
angličtina
Original language name
Propagation Reversal for Bistable Differential Equations on Trees
Original language description
We study traveling wave solutions to bistable differential equations on infinite k-ary trees. These graphs generalize the notion of classical square infinite lattices and our results complement those for bistable lattice equations on ℤ. Using comparison principles and explicit lower and upper solutions, we show that wave solutions are pinned for small diffusion parameters. Upon increasing the diffusion, the wave starts to travel with nonzero speed, in a direction that depends on the detuning parameter. However, once the diffusion is sufficiently strong, the wave propagates in a single direction up the tree irrespective of the detuning parameter. In particular, our results imply that changes to the diffusion parameter can lead to a reversal of the propagation direction.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA22-18261S" target="_blank" >GA22-18261S: Nonlinear problems with non-standard diffusion</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS
ISSN
1536-0040
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
39
Pages from-to
1906-1944
UT code for WoS article
001074431400007
EID of the result in the Scopus database
2-s2.0-85169599222