Object Detection Pipeline Using YOLOv8 for Document Information Extraction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43969624" target="_blank" >RIV/49777513:23520/23:43969624 - isvavai.cz</a>
Result on the web
<a href="https://ceur-ws.org/Vol-3497/paper-051.pdf" target="_blank" >https://ceur-ws.org/Vol-3497/paper-051.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Object Detection Pipeline Using YOLOv8 for Document Information Extraction
Original language description
The extraction of information from semi-structured documents is an ongoing problem. This task is often approached from the perspective of NLP and large transformer-based models are employed. In our work, we successfully demonstrated that the Key Information Localization and Extraction (KILE) and Line Item Recognition (LIR) tasks can be effectively addressed as object detection problems using a convolutional neural network (CNN) model. We utilized a relatively small and fast YOLOv8 model for which we conducted a series of experiments to explore the impact of different factors on model training. With YOLOv8, we were able to achieve AP 0.716 on the KILE task and 0.638 on the LIR task. Our code is available at https://github.com/strakaj/YOLOv8-for-document-understanding.git.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
CEUR Workshop Proceedings
ISBN
—
ISSN
1613-0073
e-ISSN
—
Number of pages
15
Pages from-to
583-597
Publisher name
CEUR-WS
Place of publication
Thessaloniki
Event location
Thessaloniki, Greece
Event date
Sep 18, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—