All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximate fusion of probability density functions using Gaussian copulas

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43969664" target="_blank" >RIV/49777513:23520/23:43969664 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.23919/FUSION52260.2023.10224201" target="_blank" >https://doi.org/10.23919/FUSION52260.2023.10224201</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23919/FUSION52260.2023.10224201" target="_blank" >10.23919/FUSION52260.2023.10224201</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximate fusion of probability density functions using Gaussian copulas

  • Original language description

    Subjective Bayesian estimation perceives probability density functions as expert opinions. Among various rules for combining the opinions, the product and the weighted geometric mean of densities are prominent. Nevertheless, closed-form representations are scarce and non-parametric approaches often suffer from the curse of dimensionality. This paper prospects the fusion of densities represented by non-parametric marginal densities and a parametric Gaussian copula. The explicit reconstruction of the joint densities followed by an optimisation step is avoided. A cheap approximate combination is proposed instead. The combination of marginal densities is tuned by a Gaussian term, while the proposed copula parameter uses moments of the marginal densities. The presented examples illustrate the approximative nature of the approach for non-Gaussian densities and highlight some numerical issues.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA22-11101S" target="_blank" >GA22-11101S: Tensor Decomposition in Active Fault Diagnosis for Stochastic Large Scale Systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 2023 26th International Conference on Information Fusion

  • ISBN

    979-8-89034-485-4

  • ISSN

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    1-7

  • Publisher name

    IEEE

  • Place of publication

    Charleston, USA

  • Event location

    Charleston, Jižní Karolína, USA

  • Event date

    Jun 27, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article