All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Improving Aspect-Based Sentiment with End-to-End Semantic Role Labeling Model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43970051" target="_blank" >RIV/49777513:23520/23:43970051 - isvavai.cz</a>

  • Result on the web

    <a href="https://aclanthology.org/2023.ranlp-1.96/" target="_blank" >https://aclanthology.org/2023.ranlp-1.96/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.26615/978-954-452-092-2_096" target="_blank" >10.26615/978-954-452-092-2_096</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Improving Aspect-Based Sentiment with End-to-End Semantic Role Labeling Model

  • Original language description

    This paper presents a series of approaches aimed at enhancing the performance of Aspect-Based Sentiment Analysis (ABSA) by utilizing extracted semantic information from a Semantic Role Labeling (SRL) model. We propose a novel end-to-end Semantic Role Labeling model that effectively captures most of the structured semantic information within the Transformer hidden state. We believe that this end-to-end model is well-suited for our newly proposed models that incorporate semantic information. We evaluate the proposed models in two languages, English and Czech, employing ELECTRA-small models. Our combined models improve ABSA performance in both languages. Moreover, we achieved new state-of-the-art results on the Czech ABSA.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Deep Learning for Natural Language Processing Methods and Applications

  • ISBN

    978-954-452-092-2

  • ISSN

    1313-8502

  • e-ISSN

    2603-2813

  • Number of pages

    10

  • Pages from-to

    888-897

  • Publisher name

    INCOMA Ltd.

  • Place of publication

    Shoumen

  • Event location

    Varna

  • Event date

    Sep 4, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article