All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Neural Network based Active Fault Diagnosis with a Statistical Test

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43970378" target="_blank" >RIV/49777513:23520/23:43970378 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-35170-9_21" target="_blank" >https://doi.org/10.1007/978-3-031-35170-9_21</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-35170-9_21" target="_blank" >10.1007/978-3-031-35170-9_21</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Neural Network based Active Fault Diagnosis with a Statistical Test

  • Original language description

    The paper focuses on designing an active fault detector (AFD) for a nonlinear stochastic system subject to abrupt faults. The neural network (NN) based models of the monitored system and their prediction error uncertainties are identified using historical input-output data obtained from the system under fault-free and all considered faulty conditions. The fault detector is based on a multiple hypothesis CUSUM-like statistical test that uses the identified NN models. The quality of decisions provided by such a detector is improved by a closed loop input signal generator. The input signal generator is represented by another NN and it is designed using a reinforcement learning method. The proposed AFD is illustrated by means of a numerical example.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA22-11101S" target="_blank" >GA22-11101S: Tensor Decomposition in Active Fault Diagnosis for Stochastic Large Scale Systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 21st Polish Control Conference, PCC 2023

  • ISBN

    978-3-031-35169-3

  • ISSN

    2367-3370

  • e-ISSN

    2367-3389

  • Number of pages

    10

  • Pages from-to

    227-236

  • Publisher name

    Springer

  • Place of publication

    Gliwice, Polsko

  • Event location

    Gliwice, Polsko

  • Event date

    Jun 26, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article