All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Automatic Sleep Stage Classification by CNN-Transformer-LSTM using single-channel EEG signal

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43970947" target="_blank" >RIV/49777513:23520/23:43970947 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/10385687" target="_blank" >https://ieeexplore.ieee.org/document/10385687</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/BIBM58861.2023.10385687" target="_blank" >10.1109/BIBM58861.2023.10385687</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Automatic Sleep Stage Classification by CNN-Transformer-LSTM using single-channel EEG signal

  • Original language description

    Sleep stage classification plays a crucial role in diagnosing sleep disorders and understanding sleep physiology. In recent years, automated models based on machine learning and deep learning have gained attention for sleep stage classification. This paper uses the single-channel EEG signal to present an automatic sleep stage classification system using a combination of Convolutional Neural Network (CNN), Transformer, and Long Short-Term Memory (LSTM) models. Experimental evaluation of the ISRUC sleep datasets S1 and S3 demonstrates the effectiveness of the proposed model. It achieves accuracies of 80.37% and 82.40%, respectively, achieving competitive performance compared to state-of-the-art models.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

  • ISBN

    979-8-3503-3748-8

  • ISSN

    2156-1125

  • e-ISSN

    2156-1133

  • Number of pages

    5

  • Pages from-to

    2559-2563

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Istanbul

  • Event date

    Dec 5, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article