All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Activity-Based Detection of (Anti-)Patterns: An Embedded Case Study of the Fire Drill

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43971999" target="_blank" >RIV/49777513:23520/24:43971999 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/" target="_blank" >https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.37190/e-Inf240106" target="_blank" >10.37190/e-Inf240106</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Activity-Based Detection of (Anti-)Patterns: An Embedded Case Study of the Fire Drill

  • Original language description

    Background: Nowadays, expensive, error-prone, expert-based evaluations are needed to identify and assess software process anti-patterns. Process artifacts cannot be automatically used to quantitatively analyze and train prediction models without exact ground truth. Aim: Develop a replicable methodology for organizational learning from process (anti-)patterns, demonstrating the mining of reliable ground truth and exploitation of process artifacts. Method: We conduct an embedded case study to find manifestations of the Fire Drill anti-pattern in n = 15 projects. To ensure quality, three human experts agree. Their evaluation and the process’ artifacts are utilized to establish a quantitative understanding and train a prediction model. Results: Qualitative review shows many project issues. (i) Expert assessments consistently provide credible ground truth. (ii) Fire Drill phenomenological descriptions match project activity time (for example, development). (iii) Regression models trained on ≈ 12–25 examples are sufficiently stable. Conclusion: The approach is data source-independent (source code or issue-tracking). It allows leveraging process artifacts for establishing additional phenomenon knowledge and training robust predictive models. The results indicate the aptness of the methodology for the identification of the Fire Drill and similar anti-pattern instances modeled using activities. Such identification could be used in post mortem process analysis supporting organizational learning for improving processes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF17_048%2F0007267" target="_blank" >EF17_048/0007267: Research and Development of Intelligent Components of Advanced Technologies for the Pilsen Metropolitan Area (InteCom)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    e-Informatica Software Engineering Journal (EISEJ)

  • ISSN

    1897-7979

  • e-ISSN

    2084-4840

  • Volume of the periodical

    18

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    PL - POLAND

  • Number of pages

    49

  • Pages from-to

  • UT code for WoS article

    001229559900001

  • EID of the result in the Scopus database

    2-s2.0-85188276370