Activity-Based Detection of (Anti-)Patterns: An Embedded Case Study of the Fire Drill
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43971999" target="_blank" >RIV/49777513:23520/24:43971999 - isvavai.cz</a>
Result on the web
<a href="https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/" target="_blank" >https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/issue-1/article-6/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37190/e-Inf240106" target="_blank" >10.37190/e-Inf240106</a>
Alternative languages
Result language
angličtina
Original language name
Activity-Based Detection of (Anti-)Patterns: An Embedded Case Study of the Fire Drill
Original language description
Background: Nowadays, expensive, error-prone, expert-based evaluations are needed to identify and assess software process anti-patterns. Process artifacts cannot be automatically used to quantitatively analyze and train prediction models without exact ground truth. Aim: Develop a replicable methodology for organizational learning from process (anti-)patterns, demonstrating the mining of reliable ground truth and exploitation of process artifacts. Method: We conduct an embedded case study to find manifestations of the Fire Drill anti-pattern in n = 15 projects. To ensure quality, three human experts agree. Their evaluation and the process’ artifacts are utilized to establish a quantitative understanding and train a prediction model. Results: Qualitative review shows many project issues. (i) Expert assessments consistently provide credible ground truth. (ii) Fire Drill phenomenological descriptions match project activity time (for example, development). (iii) Regression models trained on ≈ 12–25 examples are sufficiently stable. Conclusion: The approach is data source-independent (source code or issue-tracking). It allows leveraging process artifacts for establishing additional phenomenon knowledge and training robust predictive models. The results indicate the aptness of the methodology for the identification of the Fire Drill and similar anti-pattern instances modeled using activities. Such identification could be used in post mortem process analysis supporting organizational learning for improving processes.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF17_048%2F0007267" target="_blank" >EF17_048/0007267: Research and Development of Intelligent Components of Advanced Technologies for the Pilsen Metropolitan Area (InteCom)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
e-Informatica Software Engineering Journal (EISEJ)
ISSN
1897-7979
e-ISSN
2084-4840
Volume of the periodical
18
Issue of the periodical within the volume
1
Country of publishing house
PL - POLAND
Number of pages
49
Pages from-to
—
UT code for WoS article
001229559900001
EID of the result in the Scopus database
2-s2.0-85188276370