All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Learning Mesh Geometry Prediction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43972289" target="_blank" >RIV/49777513:23520/24:43972289 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-63749-0_12" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-63749-0_12</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-63749-0_12" target="_blank" >10.1007/978-3-031-63749-0_12</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Learning Mesh Geometry Prediction

  • Original language description

    We propose a single-rate method for geometry compression of triangle meshes based on using a neural predictor to predict the encoded vertex positions using connectivity and an already known part of the geometry. The method is based on standard traversal-based methods but uses a neural predictor for prediction instead of a hand-crafted prediction scheme. The parameters of the neural predictor are learned on a dataset of existing triangle meshes. The method additionally includes an estimate of the prediction uncertainty, which is used to guide the encoding traversal of the mesh. The results of the proposed method are compared with a benchmark method on the ABC dataset using both mechanistic and perceptual metrics.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GF23-04622L" target="_blank" >GF23-04622L: Data compression paradigm based on omitting self-evident information - COMPROMISE</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computational Science – ICCS 2024. Lecture Notes in Computer Science

  • ISBN

    978-3-031-63748-3

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    15

  • Pages from-to

    166-180

  • Publisher name

    Springer Nature Switzerland

  • Place of publication

    Cham

  • Event location

    Málaga

  • Event date

    Jul 2, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001279316700012