All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Harmonic series in geodesy

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43972498" target="_blank" >RIV/49777513:23520/24:43972498 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/referenceworkentry/10.1007/978-3-319-02370-0_61-1" target="_blank" >https://link.springer.com/referenceworkentry/10.1007/978-3-319-02370-0_61-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-02370-0_61-1" target="_blank" >10.1007/978-3-319-02370-0_61-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Harmonic series in geodesy

  • Original language description

    A square-integrable function, defined on a surface that has a one-to-one correspondence with the unit sphere, may be represented as a linear combination of surface spherical harmonic functions. Numerical coefficients in this linear combination can be estimated by a process called harmonic analysis. In contrary, the function can be recovered at any point using the numerical coefficients and the harmonic series by a process called harmonic synthesis. Moreover, harmonic functions, by definition satisfying Laplace’s differential equation in the 3-D space, can be represented by a series of solid harmonic functions. Alternatively, considering the shape of the Earth and other bodies in space, ellipsoidal harmonic functions can be used for the same purpose. In geodesy, harmonic series plays an important role in representation of global functions and formulation of solutions to boundary-value problems of potential theory.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    10508 - Physical geography

Result continuities

  • Project

    <a href="/en/project/GA21-13713S" target="_blank" >GA21-13713S: Uncertainty estimates for integral transformations in geodesy</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Encyclopedia of Geodesy

  • ISBN

    978-3-319-02370-0

  • Number of pages of the result

    7

  • Pages from-to

    1-7

  • Number of pages of the book

    1000

  • Publisher name

    Springer Verlag

  • Place of publication

    Cham, Switzerland

  • UT code for WoS chapter