Harmonic series in geodesy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43972498" target="_blank" >RIV/49777513:23520/24:43972498 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/referenceworkentry/10.1007/978-3-319-02370-0_61-1" target="_blank" >https://link.springer.com/referenceworkentry/10.1007/978-3-319-02370-0_61-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-02370-0_61-1" target="_blank" >10.1007/978-3-319-02370-0_61-1</a>
Alternative languages
Result language
angličtina
Original language name
Harmonic series in geodesy
Original language description
A square-integrable function, defined on a surface that has a one-to-one correspondence with the unit sphere, may be represented as a linear combination of surface spherical harmonic functions. Numerical coefficients in this linear combination can be estimated by a process called harmonic analysis. In contrary, the function can be recovered at any point using the numerical coefficients and the harmonic series by a process called harmonic synthesis. Moreover, harmonic functions, by definition satisfying Laplace’s differential equation in the 3-D space, can be represented by a series of solid harmonic functions. Alternatively, considering the shape of the Earth and other bodies in space, ellipsoidal harmonic functions can be used for the same purpose. In geodesy, harmonic series plays an important role in representation of global functions and formulation of solutions to boundary-value problems of potential theory.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10508 - Physical geography
Result continuities
Project
<a href="/en/project/GA21-13713S" target="_blank" >GA21-13713S: Uncertainty estimates for integral transformations in geodesy</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Encyclopedia of Geodesy
ISBN
978-3-319-02370-0
Number of pages of the result
7
Pages from-to
1-7
Number of pages of the book
1000
Publisher name
Springer Verlag
Place of publication
Cham, Switzerland
UT code for WoS chapter
—