UWB at WASSA-2024 Shared Task 2: Cross-lingual Emotion Detection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43972803" target="_blank" >RIV/49777513:23520/24:43972803 - isvavai.cz</a>
Result on the web
<a href="https://aclanthology.org/2024.wassa-1.47/" target="_blank" >https://aclanthology.org/2024.wassa-1.47/</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
UWB at WASSA-2024 Shared Task 2: Cross-lingual Emotion Detection
Original language description
This paper presents our system built for the WASSA-2024 Cross-lingual Emotion Detection Shared Task. The task consists of two subtasks: first, to assess an emotion label from six possible classes for a given tweet in one of five languages, and second, to predict words triggering the detected emotions in binary and numerical formats. Our proposed approach revolves around fine-tuning quantized large language models, specifically Orca 2, with low-rank adapters (LoRA) and multilingual Transformer-based models, such as XLM-R and mT5. We enhance performance through machine translation for both subtasks and trigger word switching for the second subtask. The system achieves excellent performance, ranking 1st in numerical trigger words detection, 3rd in binary trigger words detection, and 7th in emotion detection.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis
ISBN
979-8-89176-156-8
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
483-489
Publisher name
Association for Computational Linguistics
Place of publication
Kerrville
Event location
Bangkok, Thailand
Event date
Aug 15, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—