Design of Unitless Normalized Measure of Nonlinearity for State Estimation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43973105" target="_blank" >RIV/49777513:23520/24:43973105 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.23919/FUSION59988.2024.10706367" target="_blank" >https://doi.org/10.23919/FUSION59988.2024.10706367</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/FUSION59988.2024.10706367" target="_blank" >10.23919/FUSION59988.2024.10706367</a>
Alternative languages
Result language
angličtina
Original language name
Design of Unitless Normalized Measure of Nonlinearity for State Estimation
Original language description
The paper deals with measures of nonlinearity. In state estimation, they are utilized i) to select a suitable state estimation algorithm by assessing the nonlinearity of a system model, ii) to adapt the estimation algorithm structure or parameters, or iii) to indicate the possible effect of strong nonlinearity that leads to estimate credibility loss. This paper summarizes the state of the art of nonlinearity measures, focusing on the mean-square-error-based measure of nonlinearity. Its weak point is illustrated, and based on this, requirements for the new measure of nonlinearity are formulated. A new nonlinearity measure that is both unitless and normalized is designed. Its properties are demonstrated using numerical tracking experiments.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/EH22_008%2F0004590" target="_blank" >EH22_008/0004590: Robotics and advanced industrial production</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2024 27th International Conference on Information Fusion (FUSION)
ISBN
978-1-73774-976-9
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
—
Publisher name
IEEE
Place of publication
Venice
Event location
Venice, Italy
Event date
Jul 7, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001334560000095