Overview of LifeCLEF 2024: Challenges on Species Distribution Prediction and Identification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43973170" target="_blank" >RIV/49777513:23520/24:43973170 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-71908-0_9" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-71908-0_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-71908-0_9" target="_blank" >10.1007/978-3-031-71908-0_9</a>
Alternative languages
Result language
angličtina
Original language name
Overview of LifeCLEF 2024: Challenges on Species Distribution Prediction and Identification
Original language description
Biodiversity monitoring using machine learning and AI-based approaches is becoming increasingly popular. It allows for providing detailed information on species distribution and ecosystem health at a large scale and contributes to informed decision-making on environmental protection. Species identification based on images and sounds, in particular, is invaluable for facilitating biodiversity monitoring efforts and enabling prompt conservation actions to protect threatened and endangered species. The multiplicity of methods developed, however, makes it important to evaluate their performance on realistic datasets and using standardized evaluation protocols. The LifeCLEF lab has been setting up such evaluations since 2011, encouraging machine learning researchers to work on this topic and promoting the adoption of the technologies developed by stakeholders. The 2024 edition proposes five data-oriented challenges related to the identification and prediction of biodiversity: (i) BirdCLEF: bird call identification in soundscapes, (ii) FungiCLEF: revisiting fungi species recognition beyond 0-1 cost, (iii) GeoLifeCLEF: remote sensing based prediction of species, (iv) PlantCLEF: Multi-species identification in vegetation plot images, and (v) SnakeCLEF: revisiting snake species identification in medically important scenarios. This paper overviews the motivation, methodology, and main outcomes of those five challenges.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Experimental IR Meets Multilinguality, Multimodality, and Interaction. Lecture Notes in Computer Science
ISBN
978-3-031-71907-3
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
25
Pages from-to
183-207
Publisher name
Springer
Place of publication
Cham
Event location
Grenoble
Event date
Sep 9, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001336411000009