All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Overview of LifeCLEF 2024: Challenges on Species Distribution Prediction and Identification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43973170" target="_blank" >RIV/49777513:23520/24:43973170 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-71908-0_9" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-71908-0_9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-71908-0_9" target="_blank" >10.1007/978-3-031-71908-0_9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Overview of LifeCLEF 2024: Challenges on Species Distribution Prediction and Identification

  • Original language description

    Biodiversity monitoring using machine learning and AI-based approaches is becoming increasingly popular. It allows for providing detailed information on species distribution and ecosystem health at a large scale and contributes to informed decision-making on environmental protection. Species identification based on images and sounds, in particular, is invaluable for facilitating biodiversity monitoring efforts and enabling prompt conservation actions to protect threatened and endangered species. The multiplicity of methods developed, however, makes it important to evaluate their performance on realistic datasets and using standardized evaluation protocols. The LifeCLEF lab has been setting up such evaluations since 2011, encouraging machine learning researchers to work on this topic and promoting the adoption of the technologies developed by stakeholders. The 2024 edition proposes five data-oriented challenges related to the identification and prediction of biodiversity: (i) BirdCLEF: bird call identification in soundscapes, (ii) FungiCLEF: revisiting fungi species recognition beyond 0-1 cost, (iii) GeoLifeCLEF: remote sensing based prediction of species, (iv) PlantCLEF: Multi-species identification in vegetation plot images, and (v) SnakeCLEF: revisiting snake species identification in medically important scenarios. This paper overviews the motivation, methodology, and main outcomes of those five challenges.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Experimental IR Meets Multilinguality, Multimodality, and Interaction. Lecture Notes in Computer Science

  • ISBN

    978-3-031-71907-3

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    25

  • Pages from-to

    183-207

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Grenoble

  • Event date

    Sep 9, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001336411000009