A case study on entropy-aware block-based linear transforms for lossless image compression
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F24%3A43974985" target="_blank" >RIV/49777513:23520/24:43974985 - isvavai.cz</a>
Result on the web
<a href="https://www.nature.com/articles/s41598-024-79038-2" target="_blank" >https://www.nature.com/articles/s41598-024-79038-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-024-79038-2" target="_blank" >10.1038/s41598-024-79038-2</a>
Alternative languages
Result language
angličtina
Original language name
A case study on entropy-aware block-based linear transforms for lossless image compression
Original language description
Data compression algorithms tend to reduce information entropy, which is crucial, especially in the case of images, as they are data intensive. In this regard, lossless image data compression is especially challenging. Many popular lossless compression methods incorporate predictions and various types of pixel transformations, in order to reduce the information entropy of an image. In this paper, a block optimisation programming framework is introduced to support various experiments on raster images, divided into blocks of pixels. Eleven methods were implemented, including prediction methods, string transformation methods, and inverse distance weighting, as a representative of interpolation methods.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GF23-04622L" target="_blank" >GF23-04622L: Data compression paradigm based on omitting self-evident information - COMPROMISE</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Scientific Reports
ISSN
2045-2322
e-ISSN
2045-2322
Volume of the periodical
14
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
—
UT code for WoS article
001367580400021
EID of the result in the Scopus database
2-s2.0-85210572405