Induced S (K1,3) and hamiltonian cycles in the square of a graph
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F99%3A00043140" target="_blank" >RIV/49777513:23520/99:00043140 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Induced S (K1,3) and hamiltonian cycles in the square of a graph
Original language description
We prove that the square of a connected graph such that every induced S(K_{1,3}) has at least three edges in a block of degree at most 2 is hamiltonian. We also show that the insertion and under certain conditions also deletion of a block of degree 2 int(from) a connected graph does not change the hamiltonicity of its square.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
1999
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics
ISSN
0012365X
e-ISSN
—
Volume of the periodical
Vol.^207
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—