Effects of compressed strain on thermoelectric properties of Cu3SbSe4
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F18%3A43951228" target="_blank" >RIV/49777513:23640/18:43951228 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jallcom.2018.03.310" target="_blank" >http://dx.doi.org/10.1016/j.jallcom.2018.03.310</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jallcom.2018.03.310" target="_blank" >10.1016/j.jallcom.2018.03.310</a>
Alternative languages
Result language
angličtina
Original language name
Effects of compressed strain on thermoelectric properties of Cu3SbSe4
Original language description
Recently Cu3SbSe4 have attracted enhanced an interest due to abundant potential for extensive thermoelectric applications. To get a complete prediction of its thermoelectric performance and charge transport details it is important to have fundamental data concerning band structure. In the present work we have conducted comprehensive investigations of the electrical transport properties of Cu3SbSe4 using first-principles DFT band structure calculations combined with the Boltzmann transport theory.The novel 0, 2, 4 and 6% strain Cu3SbSe4 material within the frame of DFT (density functional theory) approach have been explored. First of all the electronic structure properties of the bulk material (LAO) are discussed and then the effects of different degree of strain on the electronic and thermoelectric properties are discussed.We have carried out full relaxation procedure of the atomic structure and found that a deviation by less than 1-5% from experimental data. The band structure dispersion and densityof states (total and partial) are presented. The thermoelectric properties (like Seebeck coefficient, electrical conductivity, thermal conductivity, power factor (PF) and Figure of Merit (ZT) have been discussed) versus temperature. The highest power factor obtained was equal to about 6.5~7.0×1011 W/mK2s at 850 K. This result suggests that p-type doping can enhance the thermoelectric properties of 0, 2, 4 and 6% strain Cu3SbSe4 materials in the high temperature range. Our results demonstrates a reasonable agreements with the previous results and predict the great potential for enhancement of the thermoelectric performance of Cu3SbSe4.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Result continuities
Project
<a href="/en/project/EF15_003%2F0000358" target="_blank" >EF15_003/0000358: Computational and Experimental Design of Advanced Materials with New Functionalities</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF ALLOYS AND COMPOUNDS
ISSN
0925-8388
e-ISSN
—
Volume of the periodical
750
Issue of the periodical within the volume
25 June 2018
Country of publishing house
CH - SWITZERLAND
Number of pages
7
Pages from-to
804-810
UT code for WoS article
000432668500097
EID of the result in the Scopus database
2-s2.0-85045182777