All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A novel photocatalytic water splitting solar-to-hydrogen energy conversion: Non-centro-symmetric borate CsZn2B3O7 photocatalyst

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F18%3A43954217" target="_blank" >RIV/49777513:23640/18:43954217 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jallcom.2018.01.227" target="_blank" >http://dx.doi.org/10.1016/j.jallcom.2018.01.227</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jallcom.2018.01.227" target="_blank" >10.1016/j.jallcom.2018.01.227</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A novel photocatalytic water splitting solar-to-hydrogen energy conversion: Non-centro-symmetric borate CsZn2B3O7 photocatalyst

  • Original language description

    The photocatalytic performance of the novel borate CsZn2B3O7 is theoretically investigated by means of density functional theory. The calculation highlights that the packing of the BO3 structural unit is the main source for the large macroscopic photophysical properties in CsZn2B3O7 due to high anisotropic electron distribution. The potentials of the conduction band (CB) and valence band (VB) edges values of CsZn2B3O7 are -1.789 eV and 3.891 eV, respectively. The CB edge potential of CsZn2B3O7 is more negative than the redox potential of H+/H-2, indicating that the CsZn2B3O7 has strong reduction power for H-2 production. The absorption edge of CsZn2B3O7 occurs at l = 218 nm and the optical band gap is estimated to be 5.68 eV, in good agreement with the experimental data (5.69 eV). Therefore, CsZn2B3O7 expected to be an efficient photocatalyst in the ultraviolet (UV) region. Thus, CsZn2B3O7 possesses an appropriate band gap width and suitable CB edge position together, which leads to a higher efficiency of light-driven photocatalytic H-2 production. Also, it possesses high photogenerated carrier mobility and high electronic conductivity, which favors the enhancement of the photocatalytic performance. The large photocatalytic performance is due to the strong interactions between the ZnO4 tetrahedra and co-parallel BO3 triangle groups. In this study we provide a detailed investigation concerning the suitability of CsZn2B3O7 to be used as an efficient photocatalyst under UV irradiation utilizing the first- principle material approaches, which greatly improves the search efficiency and greatly helps experiments to save resources in the exploration of new photocatalysts with good photocatalytic performance. (C) 2018 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    JOURNAL OF ALLOYS AND COMPOUNDS

  • ISSN

    0925-8388

  • e-ISSN

  • Volume of the periodical

    741

  • Issue of the periodical within the volume

    APR 15 2018

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    11

  • Pages from-to

    1258-1268

  • UT code for WoS article

    000425530700154

  • EID of the result in the Scopus database

    2-s2.0-85041559118