All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Laser surface texturing with shifted method—Functional surfaces at high speed

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F19%3A43955091" target="_blank" >RIV/49777513:23640/19:43955091 - isvavai.cz</a>

  • Result on the web

    <a href="https://lia.scitation.org/doi/10.2351/1.5096082" target="_blank" >https://lia.scitation.org/doi/10.2351/1.5096082</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2351/1.5096082" target="_blank" >10.2351/1.5096082</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Laser surface texturing with shifted method—Functional surfaces at high speed

  • Original language description

    Laser surface texturing is a promising technology for future wide application of functional surfaces with specific properties like hydrophobic, antibacterial, adhesive, selfcleaning, anticorrosion, light absorbing, low friction, etc. Great advancements have been made in this field in last years, but in most cases it takes from minutes up to one hour to produce one square centimetre of a functional surface. Even availability of high power ultrashort pulsed lasers in last years did not dramatically increase productivity, because there are physical limitations of current processing methods: heat accumulation and oxidation, plasma shielding effect and precision at high speeds. In order to solve these limitations, there have been developed a new method called shifted laser surface texturing method (sLST). The new method has a potential to be at least 100 times more productive with no heat accumulation effect and virtually unlimited number of complex shape objects produced with high precision on surface. In the present work the principle and advantages of the method are described. The results of the method are compared with two standard methods (path filling of objects and hatch over all objects). The sLST method is presented in both single pulse and burst variants. Examples of its application on different materials for increased adhesion of surface coatings are shown.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20506 - Coating and films

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    JOURNAL OF LASER APPLICATIONS

  • ISSN

    1042-346X

  • e-ISSN

  • Volume of the periodical

    31

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    "NESTRÁNKOVÁNO"

  • UT code for WoS article

    000484435200077

  • EID of the result in the Scopus database

    2-s2.0-85064206679