Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F19%3A43958577" target="_blank" >RIV/49777513:23640/19:43958577 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14310/19:00113420 RIV/00216305:26620/19:PU135039
Result on the web
<a href="https://www.nature.com/articles/s41586-019-1826-7" target="_blank" >https://www.nature.com/articles/s41586-019-1826-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41586-019-1826-7" target="_blank" >10.1038/s41586-019-1826-7</a>
Alternative languages
Result language
angličtina
Original language name
Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures
Original language description
Magnetically doped topological insulators enable the quantum anomalous Hall efect (QAHE), which provides quantized edge states for lossless charge-transport applications. The edge states are hosted by a magnetic energy gap at the Dirac point, but hitherto all attempts to observe this gap directly have been unsuccessful. Observing the gap is considered to be essential to overcoming the limitations of the QAHE, which so far occurs only at temperatures that are one to two orders of magnitude below the ferromagnetic Curie temperature, TC. Here we use lowtemperature photoelectron spectroscopy to unambiguously reveal the magnetic gap of Mn-doped Bi2Te3, which displays ferromagnetic out-of-plane spin texture and opens up only below TC. Surprisingly, our analysis reveals large gap sizes at 1 kelvin of up to 90 millielectronvolts, which is ive times larger than theoretically predicted. Using multiscale analysis we show that this enhancement is due to a remarkable structure modiication induced by Mn doping: instead of a disordered impurity system, a self-organized alternating sequence of MnBi2Te4 septuple and Bi2Te3 quintuple layers is formed. This enhances the wavefunction overlap and size of the magnetic gap. Mn-doped Bi2Se3 and Mn-doped Sb2Te3 form similar heterostructures, but for Bi2Se3 only a nonmagnetic gap is formed and the magnetization is in the surface plane. This is explained by the smaller spin–orbit interaction by comparison with Mn-doped Bi2Te3. Our indings provide insights that will be crucial in pushing lossless transport in topological insulators towards roomtemperature applications.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
<a href="/en/project/EF15_003%2F0000358" target="_blank" >EF15_003/0000358: Computational and Experimental Design of Advanced Materials with New Functionalities</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
NATURE
ISSN
0028-0836
e-ISSN
—
Volume of the periodical
576
Issue of the periodical within the volume
7787
Country of publishing house
GB - UNITED KINGDOM
Number of pages
19
Pages from-to
423-428
UT code for WoS article
000504660500092
EID of the result in the Scopus database
2-s2.0-85076877790