Electronic Structure of a Graphene-like Artificial Crystal of NdNiO3
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F19%3A43958867" target="_blank" >RIV/49777513:23640/19:43958867 - isvavai.cz</a>
Result on the web
<a href="https://pubs.acs.org/doi/10.1021/acs.nanolett.9b03962" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.nanolett.9b03962</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.nanolett.9b03962" target="_blank" >10.1021/acs.nanolett.9b03962</a>
Alternative languages
Result language
angličtina
Original language name
Electronic Structure of a Graphene-like Artificial Crystal of NdNiO3
Original language description
Artificial complex-oxide heterostructures containing ultrathin buried layers grown along the pseudocubic [111] direction have been predicted to host a plethora of exotic quantum states arising from the graphene-like lattice geometry and the interplay between strong electronic correlations and band topology. To date, however, electronic-structural investigations of such atomic layers remain an immense challenge due to the shortcomings of conventional surface-sensitive probes with typical information depths of a few angstroms. Here, we use a combination of bulk-sensitive soft X-ray angle-resolved photoelectron spectroscopy (SX-ARPES), hard X-ray photoelectron spectroscopy (HAXPES), and state-of-the-art first-principles calculations to demonstrate a direct and robust method for extracting momentum-resolved and angle-integrated valence-band electronic structure of an ultrathin buckled graphene-like layer of NdNiO3 confined between two 4-unit cell-thick layers of insulating LaAlO3. The momentum-resolved dispersion of the buried Ni d states near the Fermi level obtained via SX-ARPES is in excellent agreement with the first-principles calculations and establishes the realization of an antiferro-orbital order in this artificial lattice. The HAXPES measurements reveal the presence of a valence-band bandgap of 265 meV. Our findings open a promising avenue for designing and investigating quantum states of matter with exotic order and topology in a few buried layers.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
<a href="/en/project/EF15_003%2F0000358" target="_blank" >EF15_003/0000358: Computational and Experimental Design of Advanced Materials with New Functionalities</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
NANO LETTERS
ISSN
1530-6984
e-ISSN
—
Volume of the periodical
19
Issue of the periodical within the volume
11
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
8311-8317
UT code for WoS article
000497259300090
EID of the result in the Scopus database
2-s2.0-85074911191