All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Structural, dielectric and EMI shielding properties of polyvinyl alcohol/chitosan blend nanocomposites integrated with graphite oxide and nickel oxide nanofillers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F20%3A43960934" target="_blank" >RIV/49777513:23640/20:43960934 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/catal10111322" target="_blank" >https://doi.org/10.3390/catal10111322</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10854-020-04855-w" target="_blank" >10.1007/s10854-020-04855-w</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Structural, dielectric and EMI shielding properties of polyvinyl alcohol/chitosan blend nanocomposites integrated with graphite oxide and nickel oxide nanofillers

  • Original language description

    Polyvinyl alcohol (PVA) and Chitosan (CS)-based novel composites were prepared using solution casting technique by introducing graphite oxide (GO) and nickel oxide (NiO) as nanofillers. The structural, thermal and mechanical properties of PVA/CS/GO/NiO nanocomposites were investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analyzer (TGA), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The dielectric and electromagnetic interference (EMI) shielding properties of synthesized nanocomposites were also investigated. The addition of dual nanofillers in the PVA/CS blend resulted in improved thermal stability of nanocomposites through the interaction of nanofillers with OH groups of polymer matrices. The DMA results displayed higher storage and loss modulus at low temperature for nanocomposite with 1.5/15 wt% of GO/NiO loading. The maximum values of dielectric constant and dielectric loss obtained are 1315.5 and 11.1 at the low-frequency region, respectively. The absorption dominated EMI shielding effectiveness (SE) was observed with a maximum EMI SE value of 12 dB for nanocomposite film containing 3.0/30 wt% of GO/NiO as compared to EMI SE value of 0.3 dB for PVA/CS blend in Ku-band (12–18 GHz) region. The electrical network formation by GO and NiO in the polymer matrix resulted in an improved EMI SE which further emphasizes the potential use of these nanocomposite films as an effective EMI shielding material.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    21002 - Nano-processes (applications on nano-scale); (biomaterials to be 2.9)

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS

  • ISSN

    0957-4522

  • e-ISSN

  • Volume of the periodical

    32

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    16

  • Pages from-to

    764-779

  • UT code for WoS article

    000591127100001

  • EID of the result in the Scopus database

    2-s2.0-85096394827