Fast evaluation of finite element weak forms using python tensor contraction packages
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F21%3A43962199" target="_blank" >RIV/49777513:23640/21:43962199 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0965997821000624" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0965997821000624</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.advengsoft.2021.103033" target="_blank" >10.1016/j.advengsoft.2021.103033</a>
Alternative languages
Result language
angličtina
Original language name
Fast evaluation of finite element weak forms using python tensor contraction packages
Original language description
In finite element calculations, the integral forms are usually evaluated using nested loops over elements, and over quadrature points. Many such forms (e.g. linear or multi-linear) can be expressed in a compact way, without the explicit loops, using a single tensor contraction expression by employing the Einstein summation convention. To automate this process and leverage existing high performance codes, we first introduce a notation allowing trivial differentiation of multi-linear finite element forms. Based on that we propose and describe a new transpiler from Einstein summation based expressions, augmented to allow defining multi-linear finite element weak forms, to regular tensor contraction expressions. The resulting expressions are compatible with a number of Python scientific computing packages, that implement, optimize and in some cases parallelize the general tensor contractions. We assess the performance of those packages, as well as the influence of operand memory layouts and tensor contraction paths optimizations on the elapsed time and memory requirements of the finite element form evaluations. We also compare the efficiency of the transpiled weak form implementations to the C-based functions available in the finite element package SfePy.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF17_048%2F0007280" target="_blank" >EF17_048/0007280: Application of Modern Technologies in Medicine and Industry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ADVANCES IN ENGINEERING SOFTWARE
ISSN
0965-9978
e-ISSN
—
Volume of the periodical
159
Issue of the periodical within the volume
20. July 2021
Country of publishing house
GB - UNITED KINGDOM
Number of pages
26
Pages from-to
—
UT code for WoS article
000676736200005
EID of the result in the Scopus database
2-s2.0-85110434316