All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fast evaluation of finite element weak forms using python tensor contraction packages

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F21%3A43962199" target="_blank" >RIV/49777513:23640/21:43962199 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0965997821000624" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0965997821000624</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.advengsoft.2021.103033" target="_blank" >10.1016/j.advengsoft.2021.103033</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fast evaluation of finite element weak forms using python tensor contraction packages

  • Original language description

    In finite element calculations, the integral forms are usually evaluated using nested loops over elements, and over quadrature points. Many such forms (e.g. linear or multi-linear) can be expressed in a compact way, without the explicit loops, using a single tensor contraction expression by employing the Einstein summation convention. To automate this process and leverage existing high performance codes, we first introduce a notation allowing trivial differentiation of multi-linear finite element forms. Based on that we propose and describe a new transpiler from Einstein summation based expressions, augmented to allow defining multi-linear finite element weak forms, to regular tensor contraction expressions. The resulting expressions are compatible with a number of Python scientific computing packages, that implement, optimize and in some cases parallelize the general tensor contractions. We assess the performance of those packages, as well as the influence of operand memory layouts and tensor contraction paths optimizations on the elapsed time and memory requirements of the finite element form evaluations. We also compare the efficiency of the transpiled weak form implementations to the C-based functions available in the finite element package SfePy.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF17_048%2F0007280" target="_blank" >EF17_048/0007280: Application of Modern Technologies in Medicine and Industry</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ADVANCES IN ENGINEERING SOFTWARE

  • ISSN

    0965-9978

  • e-ISSN

  • Volume of the periodical

    159

  • Issue of the periodical within the volume

    20. July 2021

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    26

  • Pages from-to

  • UT code for WoS article

    000676736200005

  • EID of the result in the Scopus database

    2-s2.0-85110434316