Thermal conductivity of Fe-Si alloys and thermal stratification in Earth's core
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F21%3A43964072" target="_blank" >RIV/49777513:23640/21:43964072 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1073/pnas.2119001119" target="_blank" >https://doi.org/10.1073/pnas.2119001119</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1073/pnas.2119001119" target="_blank" >10.1073/pnas.2119001119</a>
Alternative languages
Result language
angličtina
Original language name
Thermal conductivity of Fe-Si alloys and thermal stratification in Earth's core
Original language description
Light elements in Earth’s core play a key role in driving convection and influencing geodynamics, both of which are crucial to the geodynamo. However, the thermal transport properties of iron alloys at high-pressure and -temperature conditions remain uncertain. Here we investigate the transport properties of solid hexagonal close-packed and liquid Fe-Si alloys with 4.3 and 9.0 wt % Si at high pressure and temperature using laser-heated diamond anvil cell experiments and first-principles molecular dynamics and dynamical mean field theory calculations. In contrast to the case of Fe, Si impurity scattering gradually dominates the total scattering in Fe-Si alloys with increasing Si concentration, leading to temperature independence of the resistivity and less electron–electron contribution to the conductivity in Fe-9Si. Our results show a thermal conductivity of ∼100 to 110 Wm21K21 for liquid Fe-9Si near the topmost outer core. If Earth’s core consists of a large amount of silicon (e.g., > 4.3 wt %) with such a high thermal conductivity, a subadiabatic heat flow across the core–mantle boundary is likely, leaving a 400- to 500-km-deep thermally stratified layer below the core–mantle boundary, and challenges proposed thermal convection in Fe-Si liquid outer core. © 2022 National Academy of Sciences. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
<a href="/en/project/EF15_003%2F0000358" target="_blank" >EF15_003/0000358: Computational and Experimental Design of Advanced Materials with New Functionalities</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
ISSN
0027-8424
e-ISSN
—
Volume of the periodical
119
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
—
UT code for WoS article
000748065500006
EID of the result in the Scopus database
2-s2.0-85122700628