All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Co Nanoparticle-Encapsulated Nitrogen-Doped Carbon Nanotubes as an Efficient and Robust Catalyst for Electro-Oxidation of Hydrazine

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F21%3A43964196" target="_blank" >RIV/49777513:23640/21:43964196 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/nano11112857" target="_blank" >https://doi.org/10.3390/nano11112857</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/nano11112857" target="_blank" >10.3390/nano11112857</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Co Nanoparticle-Encapsulated Nitrogen-Doped Carbon Nanotubes as an Efficient and Robust Catalyst for Electro-Oxidation of Hydrazine

  • Original language description

    Structural engineering is an effective methodology for the tailoring of the quantities of active sites in nanostructured materials for fuel cell applications. In the present study, Co nanoparticles were incorporated into the network of 3D nitrogen-doped carbon tubes (Co@NCNTs) that were obtained via the molten-salt synthetic approach at 800 °C. Morphological representation reveals that the Co@NCNTs are encompassed with Co nanoparticles on the surface of the mesoporous walls of the carbon nanotubes, which offers a significant active surface area for electrochemical reactions. The CoNPs/NCNTs-1 (treated with CaCl2) nanomaterial was used as a potential candidate for the electro-oxidation of hydrazine, which improved the response of hydrazine (~8.5 mA) in 1.0 M NaOH, as compared with CoNPs/NCNTs-2 (treated without CaCl2), NCNTs, and the unmodified GCE. Furthermore, the integration of Co helps to improve the conductivity and promote the lower onset electro-oxidation potential (−0.58 V) toward the hydrazine electro-oxidation reaction. In particular, the CoNPs/NCNTs-1 catalysts showed significant catalytic activity and stability performances i.e., the i-t curves showed notable stability when compared with their initial current responses, even after 10 days, which indicates the significant durability of the catalyst materials. This work could present a new approach for the design of efficient electrode materials, which can be used as a favorable candidate for the electro-oxidation of liquid fuels in fuel cell applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nanomaterials

  • ISSN

    2079-4991

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    14

  • Pages from-to

  • UT code for WoS article

    000724053700001

  • EID of the result in the Scopus database

    2-s2.0-85117916196