All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Chemical-Dealloying-Derived PtPdPb-Based Multimetallic Nanoparticles: Dimethyl Ether Electrocatalysis and Fuel Cell Application

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F23%3A43970679" target="_blank" >RIV/49777513:23640/23:43970679 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1021/acsami.3c11003" target="_blank" >https://doi.org/10.1021/acsami.3c11003</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsami.3c11003" target="_blank" >10.1021/acsami.3c11003</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Chemical-Dealloying-Derived PtPdPb-Based Multimetallic Nanoparticles: Dimethyl Ether Electrocatalysis and Fuel Cell Application

  • Original language description

    In this work, we report a novel multimetallic nanoparticle catalyst composed of Pt, Pd, and Pb and its electrochemical activity toward dimethyl ether (DME) oxidation in liquid electrolyte and polymer electrolyte fuel cells. Chemical dealloying of the catalyst with the lowest platinum-group metal (PGM) content, Pt2PdPb2/C, was conducted using HNO3 to tune the catalyst activity. Comprehensive characterization of the chemical-dealloying-derived catalyst nanoparticles unambiguously showed that the acid treatment removed 50% Pb from the nanoparticles with an insignificant effect on the PGM metals and led to the formation of smaller-sized nanoparticles. Electrochemical studies showed that Pb dissolution led to structural changes in the original catalysts. Chemical-dealloying-derived catalyst nanoparticles made of multiple phases (Pt, Pt3Pb, PtPb) provided one of the highest PGM-normalized power densities of 118 mW mg(PGM)(-1) in a single direct DME fuel cell operated at low anode catalyst loading (1 mg(PGM) cm(-2)) at 70 degrees C. A possible DME oxidation pathway for these multimetallic catalysts was proposed based on an online mass spectrometry study and the analysis of the reaction products.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

    <a href="/en/project/EH22_008%2F0004572" target="_blank" >EH22_008/0004572: Quantum materials for applications in sustainable technologies</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Applied Materials and Interfaces

  • ISSN

    1944-8244

  • e-ISSN

    1944-8252

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    49

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    56930-56944

  • UT code for WoS article

    001126774600001

  • EID of the result in the Scopus database