All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Nature of the metallic and in-gap states in Ni-doped SrTiO3

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F24%3A43972910" target="_blank" >RIV/49777513:23640/24:43972910 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1063/5.0183140" target="_blank" >https://doi.org/10.1063/5.0183140</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0183140" target="_blank" >10.1063/5.0183140</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Nature of the metallic and in-gap states in Ni-doped SrTiO3

  • Original language description

    Epitaxial thin films of SrTiO3(100) doped with 6% and 12% Ni are studied with resonant angle-resolved photoelectron spectroscopy at the Ti and Ni L2,3-edges. We find that the Ni doping shifts the valence band of n-doped pristine SrTiO3 toward the Fermi level (in the direction of p-doping) and reducing the bandgap. In the Ti t2g-derived mobile electron system (MES), the Ni doping depopulates the out-of-plane dxz/yz-derived bands, transforming the MES to two-dimensional and progressively reduces the electron density embedded in the in-plane dxy-derived bands as reflected in their Fermi momentum. Furthermore, the Ti and Ni L2,3-edge resonant photoemission is used to identify the Ni 3d impurity state in the vicinity of the valence-band maximum and decipher the full spectrum of the in-gap states originating from the Ni atoms, Ti atoms, and from their hybridized orbitals. Our experimental information about the dependence of the valence bands, MES, and in-gap states in Ni-doped SrTiO3 may help the development of this material toward its device applications associated with the reduced optical bandgap.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    APL Materials

  • ISSN

    2166-532X

  • e-ISSN

    2166-532X

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

  • UT code for WoS article

    001147721100006

  • EID of the result in the Scopus database

    2-s2.0-85183323440