Persistent flat band splitting and strong selective band renormalization in a kagome magnet thin film
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23640%2F24%3A43974796" target="_blank" >RIV/49777513:23640/24:43974796 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1038/s41467-024-53722-3" target="_blank" >https://doi.org/10.1038/s41467-024-53722-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41467-024-53722-3" target="_blank" >10.1038/s41467-024-53722-3</a>
Alternative languages
Result language
angličtina
Original language name
Persistent flat band splitting and strong selective band renormalization in a kagome magnet thin film
Original language description
Magnetic kagome materials provide a fascinating playground for exploring the interplay of magnetism, correlation and topology. Many magnetic kagome systems have been reported including the binary FemXn (X = Sn, Ge; m:n = 3:1, 3:2, 1:1) family and the rare earth RMn6Sn6 (R = rare earth) family, where their kagome flat bands are calculated to be near the Fermi level in the paramagnetic phase. While partially filling a kagome flat band is predicted to give rise to a Stoner-type ferromagnetism, experimental visualization of the magnetic splitting across the ordering temperature has not been reported for any of these systems due to the high ordering temperatures, hence leaving the nature of magnetism in kagome magnets an open question. Here, we probe the electronic structure with angle-resolved photoemission spectroscopy in a kagome magnet thin film FeSn synthesized using molecular beam epitaxy. We identify the exchange-split kagome flat bands, whose splitting persists above the magnetic ordering temperature, indicative of a local moment picture. Such local moments in the presence of the topological flat band are consistent with the compact molecular orbitals predicted in theory. We further observe a large spin-orbital selective band renormalization in the Fe d_xy + d_x²+y² spin majority channel reminiscent of the orbital selective correlation effects in the iron-based superconductors. Our discovery of the coexistence of local moments with topological flat bands in a kagome system echoes similar findings in magic-angle twisted bilayer graphene, and provides a basis for theoretical effort towards modeling correlation effects in magnetic flat band systems.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
<a href="/en/project/EH22_008%2F0004572" target="_blank" >EH22_008/0004572: Quantum materials for applications in sustainable technologies</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nature Communications
ISSN
2041-1723
e-ISSN
2041-1723
Volume of the periodical
15
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
9
Pages from-to
—
UT code for WoS article
001346144300042
EID of the result in the Scopus database
2-s2.0-85208166133