All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Camelina aquaporin CsPIP2;1 is regulated by phosphorylation at Ser273, but not at Ser277, of the C-terminus and is involved in salt- and drought-stress responses

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F14%3A43887255" target="_blank" >RIV/60076658:12310/14:43887255 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jplph.2014.06.009" target="_blank" >http://dx.doi.org/10.1016/j.jplph.2014.06.009</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jplph.2014.06.009" target="_blank" >10.1016/j.jplph.2014.06.009</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Camelina aquaporin CsPIP2;1 is regulated by phosphorylation at Ser273, but not at Ser277, of the C-terminus and is involved in salt- and drought-stress responses

  • Original language description

    Aquaporin (AQP) proteins are involved in water homeostasis in cells at all taxonomic levels of life. Phosphorylation of some AQPs has been proposed to regulate water permeability via gating of the channel itself. We analyzed plasma membrane intrinsic proteins (PIP) from Camelina and characterized their biological functions under both stressful and favorable conditions. A three-dimensional theoretical model of the Camelina AQP proteins was built by homology modeling which could prove useful in further functional characterization of AQPs. CsPIP2;1 was strongly and constitutively expressed in roots and leaves of Camelina, suggesting that this gene is related to maintenance of homeostasis during salt and drought stresses. CsPIP2s exhibited water channel activity in Xenopus oocytes. We then examined the roles of CsPIP2;1 phosphorylation at Ser273 and Ser277 in the regulation of water permeability using phosphorylation mutants. A single deletion strain of CsPIP2;1 was generated to serve as t

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    DA - Hydrology and limnology

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Plant Physiology

  • ISSN

    0176-1617

  • e-ISSN

  • Volume of the periodical

    171

  • Issue of the periodical within the volume

    15

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    12

  • Pages from-to

    1401-1412

  • UT code for WoS article

    000345631000011

  • EID of the result in the Scopus database