All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Efficient light-harvesting using non-carbonyl carotenoids: Energy transfer dynamics in the VCP complex from Nannochloropsis oceanica

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F16%3A43890603" target="_blank" >RIV/60076658:12310/16:43890603 - isvavai.cz</a>

  • Alternative codes found

    RIV/60077344:_____/16:00460502

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S000527281500273X" target="_blank" >http://www.sciencedirect.com/science/article/pii/S000527281500273X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.bbabio.2015.12.011" target="_blank" >10.1016/j.bbabio.2015.12.011</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Efficient light-harvesting using non-carbonyl carotenoids: Energy transfer dynamics in the VCP complex from Nannochloropsis oceanica

  • Original language description

    Violaxanthin-chlorophyll a protein (VCP) from Nannochloropsis oceanica is a Chl a-only member of the LHC family of light-harvesting proteins. VCP binds carotenoids violaxanthin (Vio), vaucheriaxanthin (Vau), and vaucheriaxanthin-ester (Vau-ester). Here we report on energy transfer pathways in the VCP complex. The overall carotenoid-to-Chla energy transfer has efficiency over 90%. Based on their energy transfer properties, the carotenoids in VCP can be divided into two groups; blue carotenoids with the lowest energy absorption band around 480 nm and red carotenoids with absorption extended up to 530 nm. Both carotenoid groups transfer energy efficiently from their S-2 states, reaching efficiencies of similar to 70% (blue) and similar to 60% (red). The S-1 pathway, however, is efficient only for the red carotenoid pool for which two S-1 routes characterized by 0.33 and 2.4 ps time constants were identified. For the blue carotenoids the S-1-mediated pathway is represented only by a minor route likely involving a hot S-1 state. The relaxed S-1 state of blue carotenoids decays to the ground state within 21 ps. Presence of a fraction of non-transferring red carotenoids with the S-1 lifetime of 13 ps indicates some specific carotenoid-protein interaction that must shorten the intrinsic S-1 lifetime of Vio and/or Vau whose S-1 lifetimes in methanol are 26 and 29 ps, respectively. The VCP complex from N. oceanica is the first example of a light-harvesting complex binding only non-carbonyl carotenoids with carotenoid-to-chlorophyll energy transfer efficiency over 90%.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    CE - Biochemistry

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Biochimica et Biophysica Acta - Bioenergetics

  • ISSN

    0005-2728

  • e-ISSN

  • Volume of the periodical

    1857

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    10

  • Pages from-to

    370-379

  • UT code for WoS article

    000372675600006

  • EID of the result in the Scopus database