All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Species-specific temporal variation in photosynthesis as a moderator of peatland carbon sequestration

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F17%3A43895563" target="_blank" >RIV/60076658:12310/17:43895563 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.biogeosciences.net/14/257/2017/bg-14-257-2017.pdf" target="_blank" >https://www.biogeosciences.net/14/257/2017/bg-14-257-2017.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5194/bg-14-257-2017" target="_blank" >10.5194/bg-14-257-2017</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Species-specific temporal variation in photosynthesis as a moderator of peatland carbon sequestration

  • Original language description

    In boreal bogs plant species are low in number, but they differ greatly in their growth forms and photosynthetic properties. We assessed how ecosystem carbon (C) sink dynamics were affected by seasonal variations in the photosynthetic rate and leaf area of different species. Photosynthetic properties (light response parameters), leaf area development and areal cover (abundance) of the species were used to quantify species-specific net and gross photosynthesis rates (P-N and P-G, respectively), which were summed to express ecosystem-level P-N and P-G. The ecosystem-level P-G was compared with a gross primary production (GPP) estimate derived from eddy covariance (EC) measurements. Species areal cover, rather than differences in photosynthetic properties, determined the species with the highest P-G of both vascular plants and Sphagna. Species-specific contributions to the ecosystem P-G varied over the growing season, which, in turn, determined the seasonal variation in ecosystem P-G. The upscaled growing season P-G estimate, 230 gCm (-2), agreed well with the GPP estimated by the EC (243 gCm (-2)). Sphagna were superior to vascular plants in ecosystemlevel P-G throughout the growing season but had a lower P-N. P-N results indicated that areal cover of the species, together with their differences in photosynthetic parameters, shape the ecosystem-level C balance. Species with low areal cover but high photosynthetic efficiency appear to be potentially important for the ecosystem C sink. Results imply that func-tional diversity, i. e., the presence of plant groups with different seasonal timing and efficiency of photosynthesis, may increase the stability of C sinks of boreal bogs.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10618 - Ecology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Biogeosciences

  • ISSN

    1726-4170

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    13

  • Pages from-to

    257-269

  • UT code for WoS article

    000395396600001

  • EID of the result in the Scopus database