Local Generalized Symmetries and Locally Symmetric Parabolic Geometries
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F17%3A43895569" target="_blank" >RIV/60076658:12310/17:43895569 - isvavai.cz</a>
Result on the web
<a href="https://www.emis.de/journals/SIGMA/2017/032/sigma17-032.pdf" target="_blank" >https://www.emis.de/journals/SIGMA/2017/032/sigma17-032.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3842/SIGMA.2017.032" target="_blank" >10.3842/SIGMA.2017.032</a>
Alternative languages
Result language
angličtina
Original language name
Local Generalized Symmetries and Locally Symmetric Parabolic Geometries
Original language description
We investigate (local) automorphisms of parabolic geometries that generalize geodesic symmetries. We show that many types of parabolic geometries admit at most one generalized geodesic symmetry at a point with non-zero harmonic curvature. Moreover, we show that if there is exactly one symmetry at each point, then the parabolic geometry is a generalization of an affine (locally) symmetric space.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Symmetry, Integrability and Geometry: Methods and Applications
ISSN
1815-0659
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
2017
Country of publishing house
UA - UKRAINE
Number of pages
33
Pages from-to
1-33
UT code for WoS article
000401726800001
EID of the result in the Scopus database
—