Asymptotic stability of delayed consumer age-structured population models with an Allee effect
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F18%3A43897649" target="_blank" >RIV/60076658:12310/18:43897649 - isvavai.cz</a>
Alternative codes found
RIV/60077344:_____/18:00496118
Result on the web
<a href="https://reader.elsevier.com/reader/sd/pii/S0025556418301044?token=8615B6822ED2F35AC3A7E01518BA4BAF361C39CEFFFFE175800658837CDF90E233DED995336672A09071FD42D26972BB" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S0025556418301044?token=8615B6822ED2F35AC3A7E01518BA4BAF361C39CEFFFFE175800658837CDF90E233DED995336672A09071FD42D26972BB</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.mbs.2018.10.001" target="_blank" >10.1016/j.mbs.2018.10.001</a>
Alternative languages
Result language
angličtina
Original language name
Asymptotic stability of delayed consumer age-structured population models with an Allee effect
Original language description
In this article we study a nonlinear age-structured consumer population model with density-dependent death and fertility rates, and time delays that model incubation/gestation period. Density dependence we consider combines both positive effects at low population numbers (i.e., the Allee effect) and negative effects at high population numbers due to infra-specific competition of consumers. The positive density-dependence is either due to an increase in the birth rate, or due to a decrease in the mortality rate at low population numbers. We prove that similarly to unstructured models, the Allee effect leads to model multi-stability where, besides the locally stable extinction equilibrium, there are up to two positive equilibria. Calculating derivatives of the basic reproduction number at the equilibria we prove that the upper of the two non-trivial equilibria (when it exists) is locally asymptotically stable independently of the time delay. The smaller of the two equilibria is always unstable. Using numerical simulations we analyze topologically nonequivalent phase portraits of the model.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Biosciences
ISSN
0025-5564
e-ISSN
—
Volume of the periodical
306
Issue of the periodical within the volume
DEC 2018
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
170-179
UT code for WoS article
000453496200017
EID of the result in the Scopus database
2-s2.0-85054598285