Network-Aware Adaptive Sampling for Low Bitrate Telehaptic Communication
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F18%3A43898679" target="_blank" >RIV/60076658:12310/18:43898679 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-93399-3_56" target="_blank" >http://dx.doi.org/10.1007/978-3-319-93399-3_56</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-93399-3_56" target="_blank" >10.1007/978-3-319-93399-3_56</a>
Alternative languages
Result language
angličtina
Original language name
Network-Aware Adaptive Sampling for Low Bitrate Telehaptic Communication
Original language description
While the adaptive sampling technique for kinesthetic signal transmission offers a phenomenal reduction in the time-average data rate, it does not guarantee a meaningful upper bound on the instantaneous rate, which can occasionally be comparable to the peak rate. This implies that for Quality of Service (QoS) compliance, a network bandwidth equal to the peak rate must be reserved apriori for the telehaptic stream at all times. On a shared network with unknown and time-varying cross-traffic, this is not always feasible. In order to address the intermittently high bandwidth demand as well as the network-obliviousness of adaptive sampling, we propose NaPAS: Network-aware Packetization for Adaptive Sampling. The idea is to intelligently merge multiple haptic samples generated by adaptive sampling in a packet, depending on the changing network conditions. This results in an elastic telehaptic traffic that can adapt to the available network bandwidth. Through qualitative and quantitative measures, we evaluate the performance of NaPAS and demonstrate that it outperforms standard adaptive sampling (SAS) in terms of maintaining the haptic perceptual quality and QoS compliance, while also being friendlier to the exogenous network cross-traffic.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-319-93398-6
ISSN
—
e-ISSN
1611-3349
Number of pages
13
Pages from-to
660-672
Publisher name
Springer Verlag
Place of publication
Pisa, Italy
Event location
Pisa; Italy
Event date
Jun 13, 2018
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
000458561800056