All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Plasma Flows in the Cool Loop Systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F19%3A43900781" target="_blank" >RIV/60076658:12310/19:43900781 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.3847/1538-4357/ab06f5/pdf" target="_blank" >https://iopscience.iop.org/article/10.3847/1538-4357/ab06f5/pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3847/1538-4357/ab06f5" target="_blank" >10.3847/1538-4357/ab06f5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Plasma Flows in the Cool Loop Systems

  • Original language description

    We study the dynamics of low-lying cool loop systems for three data sets as observed by the Interface Region Imaging Spectrograph. Radiances, Doppler shifts, and line widths are investigated in and around observed cool loop systems using various spectral lines formed between the photosphere and transition region (TR). Footpoints of the loop threads are either dominated by blueshifts or redshifts. The cospatial variation of velocity above the blueshifted footpoints of various loop threads shows a transition from very small upflow velocities ranging from (-1 to +1) -1 in the Mg ii k line (2796.20 formation temperature: ) to the high upflow velocities from (-10 to -20) -1 in Si iv. Thus, the transition of the plasma flows from redshift (downflows) to blueshift (upflows) is observed above the footpoints of these loop systems in the spectral line C ii (1334.53 log(T/) ,F= ,F4.3) lying between Mg ii k and Si iv (1402.77). This flow inversion is consistently observed in all three sets of the observational data. The other footpoint of the loop system always remains redshifted, indicating downflowing plasma. The multispectral line analysis in the present paper provides a detailed scenario of the plasma flow&apos;s inversions in cool loop systems leading to the mass transport and their formation. The impulsive energy release due to small-scale reconnection above the loop footpoint seems to be the most likely cause for sudden initiation of the plasma flows evident at TR temperatures. © 2019. The American Astronomical Society. All rights reserved..

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/EF16_027%2F0008364" target="_blank" >EF16_027/0008364: Development of USB - International mobility</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Astrophysical Journal

  • ISSN

    0004-637X

  • e-ISSN

  • Volume of the periodical

    874

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    16

  • Pages from-to

  • UT code for WoS article

    000462047700014

  • EID of the result in the Scopus database

    2-s2.0-85064437540