Evolution of multiple sex-chromosomes associated with dynamic genome reshuffling inLeptideawood-white butterflies
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F20%3A43901171" target="_blank" >RIV/60076658:12310/20:43901171 - isvavai.cz</a>
Result on the web
<a href="https://www.nature.com/articles/s41437-020-0325-9.pdf" target="_blank" >https://www.nature.com/articles/s41437-020-0325-9.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41437-020-0325-9" target="_blank" >10.1038/s41437-020-0325-9</a>
Alternative languages
Result language
angličtina
Original language name
Evolution of multiple sex-chromosomes associated with dynamic genome reshuffling inLeptideawood-white butterflies
Original language description
Sex-chromosome systems tend to be highly conserved and knowledge about their evolution typically comes from macroevolutionary inference. Rapidly evolving complex sex-chromosome systems represent a rare opportunity to study the mechanisms of sex-chromosome evolution at unprecedented resolution. Three cryptic species of wood-white butterflies-Leptidea juvernica,L. sinapisandL. reali-have each a unique set of multiple sex-chromosomes with 3-4 W and 3-4 Z chromosomes. Using a transcriptome-based microarray for comparative genomic hybridisation (CGH) and a library of bacterial artificial chromosome (BAC) clones, both developed inL. juvernica, we identified Z-linkedLeptideaorthologs ofBombyx morigenes and mapped them by fluorescence in situ hybridisation (FISH) with BAC probes on multiple Z chromosomes. In all three species, we determined synteny blocks of autosomal origin and reconstructed the evolution of multiple sex-chromosomes. In addition, we identified W homologues of Z-linked orthologs and characterised their molecular differentiation. Our results suggest that the multiple sex-chromosome system evolved in a common ancestor as a result of dynamic genome reshuffling through repeated rearrangements between the sex chromosomes and autosomes, including translocations, fusions and fissions. Thus, the initial formation of neo-sex chromosomes could not have played a role in reproductive isolation between theseLeptideaspecies. However, the subsequent species-specific fissions of several neo-sex chromosomes could have contributed to their reproductive isolation. Then, significantly increased numbers of Z-linked genes and independent neo-W chromosome degeneration could accelerate the accumulation of genetic incompatibilities between populations and promote their divergence resulting in speciation.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10603 - Genetics and heredity (medical genetics to be 3)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Heredity
ISSN
0018-067X
e-ISSN
—
Volume of the periodical
125
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
17
Pages from-to
138-154
UT code for WoS article
000539670600001
EID of the result in the Scopus database
2-s2.0-85086160041