All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Alternative plant designs: consequences for community assembly and ecosystem functioning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F20%3A43901264" target="_blank" >RIV/60076658:12310/20:43901264 - isvavai.cz</a>

  • Result on the web

    <a href="https://academic.oup.com/aob/article/125/3/391/5611311" target="_blank" >https://academic.oup.com/aob/article/125/3/391/5611311</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/aob/mcz180" target="_blank" >10.1093/aob/mcz180</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Alternative plant designs: consequences for community assembly and ecosystem functioning

  • Original language description

    Background Alternative organism designs (i.e. the existence of distinct combinations of traits leading to the same function or performance) are a widespread phenomenon in nature and are considered an important mechanism driving the evolution and maintenance of species trait diversity. However, alternative designs are rarely considered when investigating assembly rules and species effects on ecosystem functioning, assuming that single trait trade-offs linearly affect species fitness and niche differentiation. Scope Here, we first review the concept of alternative designs, and the empirical evidence in plants indicating the importance of the complex effects of multiple traits on fitness. We then discuss how the potential decoupling of single traits from performance and function of species can compromise our ability to detect the mechanisms responsible for species coexistence and the effects of species on ecosystems. Placing traits in the continuum of organism integration level (i.e. traits hierarchically structured ranging from organ-level traits to whole-organism traits) can help in choosing traits more directly related to performance and function. Conclusions We conclude that alternative designs have important implications for the resulting trait patterning expected from different assembly processes. For instance, when only single trade-offs are considered, environmental filtering is expected to result in decreased functional diversity. Alternatively, it may result in increased functional diversity as an outcome of alternative strategies providing different solutions to local conditions and thus supporting coexistence. Additionally, alternative designs can result in higher stability of ecosystem functioning as species filtering due to environmental changes would not result in directional changes in (effect) trait values. Assessing the combined effects of multiple plant traits and their implications for plant functioning and functions will improve our mechanistic inferences about the functional significance of community trait patterning.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10618 - Ecology

Result continuities

  • Project

    <a href="/en/project/GAP505%2F12%2F1296" target="_blank" >GAP505/12/1296: Functional species pools: shedding light on the dark diversity and its functions</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Annals of Botany

  • ISSN

    0305-7364

  • e-ISSN

  • Volume of the periodical

    125

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    8

  • Pages from-to

    391-398

  • UT code for WoS article

    000540299400002

  • EID of the result in the Scopus database

    2-s2.0-85081944409