All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Intraspecific variability drives functional changes in lichen epiphytic communities across Europe

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F20%3A43901267" target="_blank" >RIV/60076658:12310/20:43901267 - isvavai.cz</a>

  • Result on the web

    <a href="https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecy.3017" target="_blank" >https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecy.3017</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/ecy.3017" target="_blank" >10.1002/ecy.3017</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Intraspecific variability drives functional changes in lichen epiphytic communities across Europe

  • Original language description

    Traditional approaches in trait-based community ecology typically expect that trait filtering across broad environmental gradients is largely due to replacement of species, rather than intraspecific trait adjustments. Recently, the role of intraspecific trait variability has been largely highlighted as an important contributor mediating the ability of communities to persist under changing conditions and determining the community-level trait variation, particularly across limited environmental gradients. Unfortunately, few studies quantify the relative importance of species turnover versus intraspecific variability mediating the response of communities different from vascular plants. Here, we studied the functional changes in epiphytic lichen communities within 23 beech forests across large latitudinal (ca. 3,000 km) and environmental gradients in Europe to quantify the relative contribution of species turnover and intraspecific variability and the role of climate controlling community-level trait changes. For 58 lichen species, we focused on a set of 10 quantitative functional traits potentially affected by climatic conditions and related to photosynthetic performance (n = 1,184 thalli), water use strategy (n = 1,018 thalli), and nutrient uptake (n = 1,179 thalli). Our results showed that intraspecific trait variability explained most of the functional changes in lichen communities in response to the latitudinal gradient. Further, such functional changes were determined by the covariation between intraspecific trait variability and species turnover, which varied in sign depending on the trait considered. Finally, different climatic predictors explained functional variation due to both intraspecific trait variability and species turnover. We propose that lichen communities cope with contrasting climatic conditions by adjusting the functional trait values of the most abundant species within the communities rather than by the replacement of the species. Consequently, intraspecific variability should be explicitly incorporated to understand the effect of environmental changes on lichen communities, even over large environmental variations, better. Our results challenge the universality of the hypothesis that species turnover chiefly drives functional trait changes across large environmental gradients and call for a wider test of such important assumptions in trait ecology in different organism types and ecosystems.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10618 - Ecology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Ecology

  • ISSN

    0012-9658

  • e-ISSN

  • Volume of the periodical

    101

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

  • UT code for WoS article

    000527063300001

  • EID of the result in the Scopus database

    2-s2.0-85083680572