All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mechanisms and Drivers for the Establishment of Life Cycle Complexity in Myxozoan Parasites

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F20%3A43901359" target="_blank" >RIV/60076658:12310/20:43901359 - isvavai.cz</a>

  • Alternative codes found

    RIV/60077344:_____/20:00538664

  • Result on the web

    <a href="https://www.mdpi.com/2079-7737/9/1/10" target="_blank" >https://www.mdpi.com/2079-7737/9/1/10</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/biology9010010" target="_blank" >10.3390/biology9010010</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Mechanisms and Drivers for the Establishment of Life Cycle Complexity in Myxozoan Parasites

  • Original language description

    It is assumed that complex life cycles in cnidarian parasites belonging to the Myxozoa result from incorporation of vertebrates into simple life cycles exploiting aquatic invertebrates. However, nothing is known about the driving forces and implementation of this event, though it fostered massive diversification. We performed a comprehensive search for myxozoans in evolutionary ancient fishes (Chondrichthyes), and more than doubled existing 18S rDNA sequence data, discovering seven independent phylogenetic lineages. We performed cophylogenetic and character mapping methods in the largest monophyletic dataset and demonstrate that host and parasite phylogenies are strongly correlated, and that tectonic changes may explain phylogeographic clustering in recent skates and softnose skates, in the Atlantic. The most basal lineages of myxozoans inhabit the bile of chondrichthyans, an immunologically privileged site and protective niche, easily accessible from the gut via the bile duct. We hypothesize that feed-integration is a likely mechanism of host acquisition, an idea supported by feeding habits of chimaeras and ancient sharks and by multiple entries of different parasite lineages from invertebrates into the new host group. We provide exciting first insights into the early evolutionary history of ancient metazoan parasites in a host group that embodies more evolutionary distinctiveness than most other vertebrates.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology

Result continuities

  • Project

    <a href="/en/project/GX19-28399X" target="_blank" >GX19-28399X: AQUAPARA-OMICS: Aquatic parasitism meets biomics - addressing key biological questions using novel datasets and modern analytical tools</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Biology

  • ISSN

    2079-7737

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    16

  • Pages from-to

  • UT code for WoS article

    000513130900020

  • EID of the result in the Scopus database

    2-s2.0-85078227386