All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Revisiting the concept of 'enzymic latch' on carbon in peatlands

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F21%3A43903217" target="_blank" >RIV/60076658:12310/21:43903217 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985939:_____/21:00548837

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0048969721014522?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0048969721014522?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.scitotenv.2021.146384" target="_blank" >10.1016/j.scitotenv.2021.146384</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Revisiting the concept of 'enzymic latch' on carbon in peatlands

  • Original language description

    Peatlands are long-term sinks of atmospheric carbon (C) largely due to water-saturated soil conditions, decay-resistant plant litter, and the presence of biochemical compounds such as soluble phenolics. As phenolics are known inhibitors of microbial enzymes in soils, the concept of the &apos;enzymic latch&apos; on peat C was introduced, assuming that phenolics accumulate in peat water due to protection from degradation by oxidative enzymes as a result of anoxia. However, their inhibitory role in peat has not been unambiguously confirmed. We aimed to verify whether peat phenolics inhibit microbial and enzyme activities in laboratory-incubated Sphagnum litter, and bog and fen peat. Soluble humic substances were extracted from bog water as a source of natural phenolics and separated into two molecular-weight fractions. We tested the effects of (1) phenolics concentration, (2) their molecular weight and (3) anoxia on the activity of hydrolytic and oxidative enzymes, and on microbial respiration rate. The added phenolics did not suppress hydrolytic enzyme activities nor microbial respiration. Quite the contrary, phenolics addition (up to 1000 mg L-1) sometimes supported enzyme and microbial activities, indicating that phenolics (or another constituent of peat humic substances) served as a source of C. The activities of hydrolytic enzymes did not vary between oxic and anoxic peat but were double in oxic than anoxic conditions in Sphagnum litter. Differences in enzymatic and microbial activities were driven by peat type with about three times greater microbial respiration rates and enzyme activities in fen peats. Our results do not support the concept of the enzymic latch, particularly its key assumption that peat phenolics inhibit hydrolytic enzymes. While the concept was established on oceanic peatlands with low phenolic concentrations, the peat microbial community in our experiments seemed acclimated to the naturally high phenolic concentrations, characteristic for other, non-oceanic northern peatlands. Thus, the enzymic latch should not be considered as a determinative mechanism preserving the global C store in peatlands. (C) 2021 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10620 - Other biological topics

Result continuities

  • Project

    <a href="/en/project/GA18-19561S" target="_blank" >GA18-19561S: Decay resistance of Sphagnum – biochemical causes and consequences</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Science of the Total Environment

  • ISSN

    0048-9697

  • e-ISSN

  • Volume of the periodical

    779

  • Issue of the periodical within the volume

    JUL 20 2021

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    12

  • Pages from-to

  • UT code for WoS article

    000655683800012

  • EID of the result in the Scopus database

    2-s2.0-85102649943